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STRENGTH CRITERIA OF AN ANISOTROPIC MATERIAL* 

B.E. POBEDRYA 

Strength criteria are proposed for anisotropic materials as a general- 
ization of the well-known phenomenological criteria for an isotropic 
medium based on the introduction of certain functions of the stress tensor 
invariants. 

1. The viewpoint, according to which a composite is treated as a certain reduced homo- 
geneous body /l, 2/, is well-known. If even each component of the composite is isotropichere, 
the reduced body possesses an anisotropy which is customarily called structural /2/. 

A fairly large number of strength criteria, that agree to some extend with experimental 
data /3, 4/,-have-been developed for isotropic materials. The majority are based on 
introduction of a certain function, which depends on the stress tensor, that describes 
surface encompassing the safe stress states in the stress space 

F(Y,, YZ, Y,) - 0 

The function (1.1) should understandably depend on the temperature and possibly 
parameters of a physicochemical nature. However, for simplicity we shall consider all 

the 
a 

(i.1) 

other 
these 

parameters to be fixed. Here YC; (a = i, 2, 3) are three independent invariantsofasymmetric 
stress tensor /5/, for which we can select, say 

Y, = 8 = UI;, Yz = u, = (s~,s~,)“*, Y, - det 1 sll 1 (1.2) 

where 0: is the intensity of the stress tensor IIallII; summation from l-3 is over repeated 
subscripts. 

It is sometimes assumed that the function F is independent of the third invariant .Y, and 
the criterion (1.1) is represented in the form 

f (4 = K @I 0.3) - 
*Prlk~.Natem.~elekhan., 52,1,141-144,1988 
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where K is a certain material "constant" which depends on the hydrostatic pressure 8. In the 

simplest case, the function f is assumed to be linear so that the criterion (1.3) takes the 

form 
0, = K UN (1.4) 

The so-called tensor-polynomial formulation (2, 6-E/ 

(#s,,)" +(Fl,tfl&$='+ (~;fklmn~4~k&mn)=‘+ * * * =I 0.5) 

is sometimes used in considering the phenomenoldgical fracture criteria of anisotropic media, 
where F(Q) are tensors of rank 2 (a + I), called the strength tensors, and a, are certain 
constants (q 9 O,i ,...). Mostoftenitisassumedthat q(2 in (1.5). Then in the case of 
an isotropic medium, not only the criterion (1.1) but even the criteria (1.3) and (1.4) follow 
from the representation (1.5). 

New strength criteria are proposed below for anisotropic materials as a generalization 
of the criteria (1.11, (1.3) and (1.4). 

2. We consider first a transversally-isotropic material (TIM). Let its axis of 
transversal isotropy be characterized by a vector with the components c, in a certain rec- 
tangular Cartesian coordinate system. 

The symmetric stress tensor for the TIM has five independent invariants /5/, two of 
which are linear and two quadratic /9/ 

Then the criteria 
be written in the form 

where Y, is determined 

are obvious. 
Consequently, the 

u = c,u,jcj, 5 = ‘l#J,, (6,, - qc,) 

Q = (Y - uz)‘/., P = lOl,O,, + u* - 2 (Y + ?)I”1 

ty = Ciulkukflj) 

for TIM that correspond to criterion (1.1) for an isotropic medium can 

F (a, 0, P, 0, Y,) = 0 (2.1) 
in (1.21, for example. The identities 

8 G u + 23, u, 3 IP' + 2Q' + V, (u -@a]'/* 

criteria (1.3) and (1.4) for TIM can be generalized in the form 

f(P, 0, 10 -al)= K(u, 6) 
Pz + a,Q* + az(u -a)* = Kz (u, 6) 

Pz + 2Q' + 213 (0. - 5)' = K2(u, 6) 

(2.2) 

Here and henceforth aI, . . . are certain constants. 
The criterion (2.2) can, of course be represented in the form 

f (P, Q) = K(u, C), P* + a# = Kf (u, a), Pz + 2Qz = K*(u, 5) (2.3) 

However, it is more difficult to see the relationship with criteria (1.3) and (1.4) for 
the isotropic case from (2.3). 

3. For orthotropic materials the symmetric stress tensor has six independent invariants 

p,, * * *, p, /9/ (as in the case of the most general anisotropy), where three are linear. 
Let the principal axes or orthotropy be characterized by an orthonormalized reference 

point with the components cltX) (x. i = 1, 2, 3). It is convenient to take asindependentinvariants 

The identities 

PX = C,(Y) UtF,("), Px+3 = (VfY, - 2V,Z)'/l 
(V, ns c,(x) ul&jc,(X)r x = 1, 2, 3) 

8 = PI + p2 + p,, a, = ‘/z [(P, - P*)P + (Pa - P,)' $ 
(P* - PI)'1 + P,' + P,' + P,Z 

are easily established. 
Then the criterion (1.1) for an orthotropic medium can be generalized in the form 

F(P,, . . ., Pa) = 0 
and the criteria (1.3) and (1.4) in the form 

f (P,, p,, p,, I p, - Pz I, I p2 - PI It I p, - PI I) = 

p PI, PO, P,), P,' + alP,' + a2P.’ + 

(3.1) 

(3.2) 



a,l(P, -- I’,)” I (P, - f’J2 -j (f3 - f,)*l = 
K2 (P,, P,, P3). I’,? -,- P,* -I- fez A 
‘llg l(f’, - f*)? -.- (P? - P,)* -i (P3 - PI)* = K* (I’,, Pz, P*) 

In this Case also the criteria (3.21 can be represented in the form 

although it is more difficult to see the relationship with the criteria (1.3) and (1.4) for 

an isotropic medium for (3.3). 

We also note that the criteria (3.1)-(3.3) are more general than their corresponding 

criteria (2.1)-(2.3): no assumption on the absence of the cubic invariant (1.2) is required 

for their formulation because the arguments of the functions F in (3.1) are only linear and 

quadratic invariants. 

4. Analogous criteria can be formulated for media with arbitrary anisotropy. For the 

medium under consideration let the stress tensor have N independent invariants Q1, . .., Qx, 
where m are linear, and (a-m) are quadratic (m< 3). Here the quantities Q1 (i = 1, . . . . 
N)are understood to be the joint invariants of the stress tensor with the tensors giving the 

geometric symmetry of the medium. Such tensors are written down for all textures and syngonies 

in /lO/, from which it also fellows that N is finite. Then the generalization of the criterion 

(1.1) will be 
p (Q,. . ., Qs) -2 0 (4.1) 

We introduce additionally a quasilinearity postulate /9/ which, as it applies to (4.1), 

is that F depends only on linear and quadratic invariants, where NC< 6. 
After this, the generalization of the criterion (1.3) Can be formulated as 

where m.< 3. Taking 

the generalization of 

f (Q ntt,, . . . . 0,) = K (Q,, ..Qm) 

account of the identity 

8~ 2 u,Q,, uuz cy $lQva i xf$,(GQr a&x), 
x2, I 

the criteria (1.3) and (1.4) Can be formulated 

/ (Qm+l. . ., Q., I a,Qz - azQ11. . . . lamQ1 - a,QmI) 
K (91,. .,Qm) 

-Here &are numbers subject to the condition (1.5) 

E a,*=3 
x=1 

n .-: 6 

in the form 

E_ 

(4.2) 

In particular, for an isotropic medium m = i (n = 2), and it consequently follows from 

/ll/ For a transversally-isotropic medium m = 2 (n = 4), and in this case 

~,=I,o~=)/~,Q~=~,Q~=~/~,Q~=P,Q,=~/-~ 
AS already mentioned, for an orthotropic medium m = 3 (n = 6); in th 

a1 = 02 = a, = i, Qt - Pt (i = I,. . .,6) 

is case 

Of course, all the strength criteria proposed above require experimental confirmation 

even though their sole advantage over already existing criteria is the generalityandlogical 

connection with corresponding criteria for isotropic materials. 
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THE SPATIAL PROBLEM OF THE COMPRESSION OF A MATERIAL ALONG A 
PERIODIC SYSTEM OF PARALLEL CIRCULAR CRACKS* 

V.M. NAZAPENKO 

The non-axisymmetric problem of the biaxial uniform compression of a 
material along a periodic system of parallel circular cracks is considered. 
A facture criterion is used /l, 2/ within the framework of linearized 
stability theory according to which the beginning of fracture of the 
material under compression along the cracks is characterized by local 
buckling near the cracks. Within the framework of this approach, axi- 
symmetric and plane problems were considered earlier for differentmaterial 
models (highly-elastic, composite and plastic) for one or two internal 
cracks, near-surface cracks and a periodic system of cracks /l-13/**. 
(**See also: Nazarenko, V.M., The axisymmetric problem of the fracture 
mechanics of materials under compression along a periodic system of 
parallel cracks (unequal roots). 

Proceeding of the Eleventh Scientic Conf. of Young Scientists. Inst. 
Mechanics, Ukraine Academy of Sciences, Kiev, 1986. 154-161, Dep. VINITI 
5507-86, July 28, 1986 Nazarenko, V.M. and Starodubtsev, I.P., On material 
fracture under compression along two parallel cracks in the case of plane 
strain. Non-classical and Mixed Problems of the Mechanics of a Deformable 
Body: Materials of a Seminar of Young Scientists, Kiev, 1985, 142-145, 
Dep. 5531-85 in VINITI, July 29, 1985.1 The investigation is performed 
in general form for an arbitrary kind ofelasticpotentialforcompressible 
andincompressiblematerials,thetheoryoflargeandmodification~ofsmallsub- 
critical strains, and can be extended to other models of a deformable 
body (composites, plastic bodies, etc.). 

1. Formulation of the problem. Fracture of a material weakened by a peripdic 
system of parallel disc-shaped coaxial cracks {r<a,0<0<h,t, = 2hn, n = O.&i,&-&. ..)under 
biaxial compression in planes parallel to the cracks is considered. Lagrange coordinates 

=I (I = I‘& 3) are utilized that are identical with the Cartesian coordinatesintheundeformed 
state, as are the symmetric stress tensor St referred to unit area of the body in the 
undeformed state, u, t is the perturbation of the displacement vector and the non-symmetric 
Kirchhoff stress tensor, respectively, and r, 8. za are the cylindrical coordinates obtainable 
from the Cartesian coordinates z,(j = 1,2,3). 
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